Acta Cryst. (2006). E62, m1117–m1118 doi:10.1107/S1600536806013754 li et al. • [Sn₄(CH₃)₈(C₆H₃ClNO₂)Cl₃O₂]·C₄H₁₀O **m1117**

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Fa-Hui li, Han-Dong Yin,* Li Sun, Qiang Zhao and Wen-Li Liu

College of Chemistry and Chemical Engineering, Liaocheng University, Shandong 252059, People's Republic of China

Correspondence e-mail: yinhandong@tom.com

Key indicators

Single-crystal X-ray study T = 298 K Mean σ (C–C) = 0.008 Å Some non-H atoms missing R factor = 0.032 wR factor = 0.089 Data-to-parameter ratio = 25.9

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

© 2006 International Union of Crystallography

All rights reserved

Di- μ_2 -chloro-1: $2\kappa^2 Cl$,3: $4\kappa^2 Cl$ -chloro- $4\kappa Cl$ -(6-chloropyridine-3-carboxylato- $1\kappa^2 O$,O')octamethyl- $1\kappa^2 C$,- $2\kappa^2 C$, $3\kappa^2 C$, $4\kappa^2 C$ -di- μ_3 -oxo-1:2: $3\kappa^3 O$,2:3: $4\kappa^3 O$ -tetratin(IV) diethyl ether solvate

In the title compound, $[Sn_4(CH_3)_8(C_6H_3CINO_2)Cl_3O_2]$ -C₄H₁₀O, Cl and O atoms bridge the Sn species, resulting in a cluster containing four metal atoms. Three of the four Sn coordination polyhedra are trigonal bipyramids; the other is irregular six-coordinate. Long Sn···O and Sn···N interactions result in the formation of a sheet structure.

Comment

The main molecule of the title compound, (I) (Fig. 1), contains four Sn atoms assembled about a central Sn_2O_2 core. The three-coordinate bridging atoms O1 and O2 in the Sn_2O_2 ring are also attached to a terminal Me₂Sn unit; a chloride ion also bridges to this terminal grouping.

Mc

Мe

Me

·(C2H5)2O

Me

.Cl

Me

(I)

The geometry of Sn1 is irregular; the C1 carboxylate group coordinates very asymmetrically resulting in a very long Sn1-O4 bond. The C1-O3 and C1-O4 bond lengths suggest that the carboxylate charge is essentially localized (Table 1).

This unusual Sn1 coordination may arise because of supramolecular interactions in the crystal structure. An Sn1 \cdots O4(2 - x, 1 - y, 1 - z) contact of 3.182 (6) Å occurs, roughly bisecting the C7-Sn1-C8 grouping, leading to dimeric associations of C₁₆H₃₂Cl₄NO_{4.5}Sn₄ molecules *via* a second Sn₂O₂ unit (Fig. 2).

If a long $\text{Sn4} \cdots \text{N1}(1 - x, 1 - y, 1 - z)$ contact of 3.443 (1) Å is considered to be a bonding interaction (van der Waals radius sum = 3.81 Å), then a two-dimensional network is formed (Fig. 2). The local structure of (I) is similar to that seen previously in a related compound (Reyes *et al.*, 2003).

Received 20 March 2006 Accepted 16 April 2006

Experimental

The reaction was carried out under a nitrogen atmosphere. 6-Chloronicotinic acid (0.1576 g, 1 mmol) and sodium ethoxide (0.0681 g, 1 mmol) were added to benzene (80 ml) in a Schlenk flask, and the mixture was stirred for 20 min; Me_2SnCl_2 (0.4394 g, 2 mmol) was then added to the mixture, which was stirred for 12 h at 323 K. After cooling to room temperature, the solution was filtered. The solvent of the filtrate was gradually removed by evaporation under vacuum until a solid product was obtained. The solid was then recrystallized from diethyl ether to yield blocks of (I) (yield 0.6489 g, 70%; m.p. 411 K).

V = 3342.7 (8) Å³

 $D_x = 1.939 \text{ Mg m}^{-3}$

Mo $K\alpha$ radiation $\mu = 3.30 \text{ mm}^{-1}$

T = 298 (2) K

 $R_{\rm int} = 0.028$

 $\theta_{\rm max} = 26.0^{\circ}$

Block, colorless

 $0.42 \times 0.29 \times 0.18 \text{ mm}$

17200 measured reflections

6521 independent reflections 4331 reflections with $I > 2\sigma(I)$

H-atom parameters constrained

 $w = 1/[\sigma^2 (F_o^2) + (0.04P)^2]$

 $(\Delta/\sigma)_{\rm max} = 0.001$

 $\Delta \rho_{\rm max} = 0.57 \ {\rm e} \ {\rm \AA}^{-3}$

 $\Delta \rho_{\rm min} = -0.79 \ {\rm e} \ {\rm \AA}^{-3}$

where $P = (F_o^2 + 2F_c^2)/3$

Z = 4

Crystal data

 $\begin{bmatrix} Sn_4(CH_3)_8(C_6H_3CINO_2) - CI_3O_2 \end{bmatrix} \cdot C_4H_{10}O \\ M_r = 964.14 \\ Monoclinic, P2_1/n \\ a = 16.123 (2) Å \\ b = 11.0953 (15) Å \\ c = 20.309 (3) Å \\ \beta = 113.059 (2)^\circ$

Data collection

Bruker SMART CCD diffractometer ω scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{min} = 0.338, T_{max} = 0.588$ (expected range = 0.317–0.552)

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.032$ $wR(F^2) = 0.089$ S = 1.086521 reflections 252 parameters

Table 1

Selected	geometric	parameters	(Å,	°)	•
----------	-----------	------------	-----	----	---

Sn1-O1	2.031 (3)	Sn3-C12	2.083 (6)
Sn1-C8	2.091 (5)	Sn3-C11	2.092 (6)
Sn1-C7	2.096 (5)	Sn3-O2	2.134 (3)
Sn1-O3	2.148 (3)	Sn3-Cl2	2.6434 (15)
Sn1-O4	2.690 (4)	Sn4-O2	2.023 (3)
Sn1-Cl2	2.9098 (15)	Sn4-C13	2.094 (6)
Sn2-O2	2.038 (3)	Sn4-C14	2.096 (6)
Sn2-C9	2.087 (5)	Sn4-Cl4	2.4649 (17)
Sn2-C10	2.108 (5)	Sn4-Cl3	2.7730 (15)
Sn2-O1	2.122 (3)	C1-O4	1.226 (6)
Sn2-Cl3	2.6701 (15)	C1-O3	1.296 (6)
Sn3-O1	2.032 (3)		
O1-Sn1-C8	105.51 (18)	O3-Sn1-O4	52.46 (11)
O1-Sn1-C7	104.75 (19)	O1-Sn1-Cl2	73.60 (9)
C8-Sn1-C7	145.4 (2)	C8-Sn1-Cl2	85.00 (17)
O1-Sn1-O3	82.20 (12)	C7-Sn1-Cl2	87.68 (16)
C8-Sn1-O3	100.49 (19)	O3-Sn1-Cl2	155.76 (9)
C7-Sn1-O3	99.95 (18)	O4-Sn1-Cl2	151.68 (8)
O1-Sn1-O4	134.66 (11)	C1-Sn1-Cl2	176.37 (11)
C8-Sn1-O4	84.63 (18)	C1-O3-Sn1	105.2 (3)
C7-Sn1-O4	86.03 (18)	C1-O4-Sn1	81.4 (3)

Figure 1

The molecular structure of (I) with 30% displacement ellipsoids (H atoms omitted for clarity).

View down [010] of a section of the two-dimensional supramolecular network in the crystal structure of (I), showing the intermolecular $Sn \cdots O$ and $Sn \cdots N$ interactions as dashed lines. H atoms have been omitted.

The main molecule is accompanied by a highly mobile/disordered diethyl ether molecule. Attempts to model this species were not successful, so the SQUEEZE option of *PLATON* (Spek, 2003) was used to remove the contribution of this species. The site occupancies of the ether atoms are not certain; full occupancy was assumed for the determination of overall molecular weight *etc*. H atoms were positioned geometrically (C-H = 0.93–0.97 Å) and refined as riding with $U_{\rm iso}({\rm H}) = 1.2U_{\rm eq}({\rm C})$ or $1.5U_{\rm eq}({\rm methyl C})$.

Data collection: *SMART* (Bruker, 1998); cell refinement: *SAINT* (Bruker, 1998); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (*Bruker, 1998*); software used to prepare material for publication: *SHELXL97*.

We acknowledge the financial support of the Shandong Province Science Foundation and the State Key Crystal Material, Shandong University, People's Republic of China.

References

Bruker (1998). SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.

Reyes, G. Z., Jesus, R. Q. & Herbert, H. (2003). Inorg. Chem. 42, 3835-3845.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (1997). *SHELXS97* and *SHELXL97*. University of Göttingen, Germany.

Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.